EPRI Condenser Technology Conference

Condenser Performance Meaningful Data with Minimal Instruments

Collin Eckel Timothy J. Harpster, PhD

Intek, Inc. 751 Intek Way Westerville, OH ceckel@intekflow.com

Cleanliness Factor Essential Parameters

- Cooling Water Inlet Bulk Temperature
- Cooling Water Outlet Bulk Temperature
- Condenser Pressure
- Cooling Water Flow Rate or Condenser Duty

* Tube length, OD, gauge, material, passes

Cleanliness Factor Basic Equations

•
$$U^+ = \frac{Q}{A \cdot \Delta T_{LM}}$$

- $Q = \dot{m}C_p\Delta T$
- $U^* = U_1 F_m F_w$
- U_1 : $f(V_{tube}, OD_{tube})$
- *F_m*: *f*(*Tube Material*, *Tube Gauge*)
- F_W : $f(T_{in})$
- $CF = \frac{U^+}{U^*}$

Cleanliness Factor Sample Error

Unit Information: 330 MW, Coal-fired Westinghouse Condenser, 165,000 sq.ft.

Parameter	Value	Error	Calculated Cleanliness Factor
Inlet Temperature	75	-0.5 / +0.5 °F	86.5 / 83.7
Outlet Temperature	94.5	-0.5 / +0.5 °F	80.8 / 89.7
Condenser Pressure	2.04	-0.1 / +0.1 inHgA	98.0 / 75.9
Circulating Water Flow	155,000	-5 / +5 % of reading	82.9 / 87.2
Cleanliness Factor	85%		69.2 / 108.2

Cooling Water Inlet Bulk Temperature

PTC 12.2 Guidelines

- Accuracy: ±0.1°F
- 4-wire RTD is recommended; however, if the accuracy requirement is met then many other sensor styles are acceptable
- **Common Issues**
 - Instrument/calibration accuracy

Cooling Water Outlet Bulk Temperature

PTC 12.2 Guidelines

- Accuracy: Individual measurement ±0.1°F, Overall measurement ±0.3°F
- Installed far downstream, less than 1,000 diameters (well-mixed), if available -or-
- Array of measurements
- Issues
 - Instrument/calibration accuracy
 - Thermal stratification

Cooling Water Outlet Bulk Temperature Thermal Stratification

Cooling Water Outlet Bulk Temperature Thermal Stratification

Condenser Pressure

PTC 12.2 guidelines

- Accuracy: ±0.05 in. Hg
- Static taps (ASME PTC 19.2), Basket tips, or guide plates
- 1' to 3' above the tube bundle, multiple test points along the length of the condenser
- Electronic absolute pressure transducer
- Common Issues
 - Unsuitable location
 - Transducer type
 - Transport tubing

Cooling Water Flow Rate

PTC 12.2 guidelines

- Accuracy: ±3% (of reading)
- Velocity traverse, tracer-dye dilution, ultrasonic time-of-travel

Issues

- One-time measurements (traverse, dilution)
- Online Instrument availability
- Instrument accuracy

Cooling Water Flow Rate DP Meter

- Existing differential pressure producing features in the circulating water piping
 - Waterbox-pipe orifice
 - Elbows
- Repeatable and measurable pressure drops can be correlated to circulating water flow rate

Cooling Water Flow Rate DP Meter

Installation locations to avoid

- Near ball cleaning screens
- Near butterfly valves
- Special Considerations
 - Compensation for remote seal fill fluid specific gravity difference and seal height
 - Calibration

Cooling Water Flow Rate DP Meter

Case Study

Instruments installed

- RTDs (Qty. 2): Measure circulating water temperature into each inlet waterbox.
- RTDs (Qty. 8): Measure circulating water temperature out of each outlet waterbox. Four RTDs in each outlet circulating water pipe to account for thermal stratification. Far downstream location unavailable.
- Condenser Pressure (Qty. 2): Measure condenser shell side steam pressure and temperature.
- Differential Pressure (DP) meters (Qty. 2): Measure circulating water flow through each flow path. Calibrated via a pitot tube traverse on the cooling tower risers.

Case Study

